Neurofeedback for targeting drug-induced symptoms
Neurofeedback has the ability to target the specific neurological differences in recreational drug users, including modifications in brain activity patterns and connectivity that are related to drug use.
With the help of brain imaging techniques like qEEG, these differences can be identified and addressed with individualised neurofeedback protocols that are tailored to meet the unique needs of each person.
These protocols are carefully monitored and adjusted for the most effective treatment outcome.
With neurofeedback, individuals can work towards restoring improved brain functions, alleviating drug-induced symptoms like depression and anxiety, reducing drug cravings, facilitating long-lasting recovery, and ultimately improving their overall quality of life.
Neuroplasticity, drug use and neurofeedback
Neuroplasticity is the brain’s ability to change and adapt in response to experiences and learning. Prolonged drug use can have detrimental effects on neuroplasticity, resulting in long-lasting alterations to neural connections and pathways, affecting how circuits are wired. These undesirable drug-induced neuroplastic changes can result in dysfunctional reward pathways and impaired communication between neurons, causing long-term side effects such as depression, anxiety, cognitive impairment, and psychotic-like symptoms.
Despite these negative effects, the brain’s remarkable neuroplasticity also offers opportunities for recovery and healing, even after drug-induced changes have occurred. Neurofeedback is one technique that can harness the brain’s neuroplasticity by rewiring neurons to improve brain function. Neurofeedback can help with maladaptive patterns that lead to different behavioural and emotional symptoms of dysregulation caused by drug use. It allows the dysregulated brain to learn to correct itself, make new connections, and encourage better communication between different regions, ultimately facilitating recovery and ameliorating side effects.
Neurofeedback and Functional Connectivity
Recent research has highlighted the promising role of neurofeedback training in improving brain function and modulating functional connectivity. This method involves targeting specific brain regions to enhance or suppress specific neural activity, leading to positive changes in functional connectivity and improved cognitive and emotional functioning (Krylova et al., 2021). Such improvements can also be associated with overall well-being, making neurofeedback a widely-used technique for individuals with various mental health conditions (Megumi et al., 2015; Li et al., 2020).
Several studies have demonstrated the effectiveness of neurofeedback in improving functional connectivity in individuals with various mental health conditions, including depression, anxiety, and ADHD (Taylor et al., 2022; Zhao et al., 2019; Rubia et al., 2019).
Drug use can significantly impact the brain’s functional connectivity, leading to symptoms of depression and anxiety (Ersche et al., 2020; Leyrer-Jackson et al., 2021). Neurofeedback training can be an effective tool in reversing these negative changes by targeting specific brain regions affected by drug use. Through connectivity neurofeedback training, individuals can reduce drug cravings and improve symptoms of depression, anxiety and psychosis (Martz et al., 2020).
Points to consider when looking at drug research
Inconsistencies in the literature in recreational drug studies and EEG changes are common. Some factors that may contribute to inconsistencies include:
1. Study design: variations in study design, such as differences in drug administration method, dose, and frequency.
2. Sample size: small sample sizes may not have enough statistical power to detect small changes in EEG readings, leading to inconsistent results.
3. Subject population: variations in the subject population, such as differences in age, gender, comorbid disorders, drug use history, poly-drug users, and abstinence duration, may affect the results. For instance, when studying polydrug abusers, the observed EEG effects of a specific drug may not be solely attributed to that drug but rather may be influenced by chronic exposure to other serious drugs of abuse. This can confound the results and make it difficult to determine the pure effect of the drug being investigated. Therefore, it is crucial to carefully examine the subject population when evaluating drug research or account for these confounding variables when analysing data.
4. EEG methodology: differences in EEG measurement methodology, such as electrode placement and signal processing techniques.
5. Statistical analysis: variations in statistical analysis methods, such as different statistical tests or methods of controlling for confounding variables.
References
Adamaszek, M., Khaw, A. V., Buck, U., Andresen, B., & Thomasius, R. (2010). Evidence of neurotoxicity of ecstasy: sustained effects on electroencephalographic activity in polydrug users. PloS one, 5(11), e14097. https://doi.org/10.1371/journal.pone.0014097 Akeju, O., Song, A. H., Hamilos, A. E., Pavone, K. J., Flores, F. J., Brown, E. N., & Purdon, P. L. (2016). Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 127(6), 2414–2422. https://doi.org/10.1016/j.clinph.2016.03.005 Allsop, D. J., Copeland, J., Norberg, M. M., Fu, S., Molnar, A., Lewis, J., & Budney, A. J. (2012). Quantifying the clinical significance of cannabis withdrawal. PloS one, 7(9), e44864. https://doi.org/10.1371/journal.pone.0044864 Alonso, J. F., Romero, S., Mañanas, M. À., & Riba, J. (2015). Serotonergic psychedelics temporarily modify information transfer in humans. The international journal of neuropsychopharmacology, 18(8), pyv039. https://doi.org/10.1093/ijnp/pyv039 Alper, K. R., Chabot, R. J., Kim, A. H., Prichep, L. S., & John, E. R. (1990). Quantitative EEG correlates of crack cocaine dependence. Psychiatry research, 35(2), 95–105. https://doi.org/10.1016/0925-4927(90)90013-v Aroni, F., Iacovidou, N., Dontas, I., Pourzitaki, C., & Xanthos, T. (2009). Pharmacological aspects and potential new clinical applications of ketamine: reevaluation of an old drug. Journal of clinical pharmacology, 49(8), 957–964. https://doi.org/10.1177/0091270009337941 Ashok, A. H., Mizuno, Y., Volkow, N. D., & Howes, O. D. (2017). Association of Stimulant Use With Dopaminergic Alterations in Users of Cocaine, Amphetamine, or Methamphetamine: A Systematic Review and Meta-analysis. JAMA psychiatry, 74(5), 511–519. https://doi.org/10.1001/jamapsychiatry.2017.0135 Banerjee, S., & Argáez, C. (2017). Neurofeedback and biofeedback for mood and anxiety disorders: A review of Clinical Effectiveness and guidelines. Canadian Agency for Drugs and Technologies in Health. Başar, E., & Güntekin, B. (2009). Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view". International journal of psychophysiology : official journal of the International Organization of Psychophysiology, 71(1), 2–8. https://doi.org/10.1016/j.ijpsycho.2008.07.018 Benyamin, R., Trescot, A. M., Datta, S., Buenaventura, R., Adlaka, R., Sehgal, N., Glaser, S. E., & Vallejo, R. (2008). Opioid complications and side effects. Pain physician, 11(2 Suppl), S105–S120. Berman, R. M., Cappiello, A., Anand, A., Oren, D. A., Heninger, G. R., Charney, D. S., & Krystal, J. H. (2000). Antidepressant effects of ketamine in depressed patients. Biological psychiatry, 47(4), 351–354. Bey, T., & Patel, A. (2007). Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. The California journal of emergency medicine, 8(1), 9–14. Blain-Moraes, S., Lee, U., Ku, S., Noh, G., & Mashour, G. A. (2014). Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth. Frontiers in systems neuroscience, 8, 114. https://doi.org/10.3389/fnsys.2014.00114 Bojak, I., Day, H. C., & Liley, D. T. (2013). Ketamine, Propofol, and the EEG: A Neural Field Analysis of HCN1-Mediated Interactions. Frontiers in computational neuroscience, 7, 22. https://doi.org/10.3389/fncom.2013.00022 Bolea, A. S. (2010). Neurofeedback treatment of chronic inpatient schizophrenia. Journal of Neurotherapy, 14(1), 47–54. https://doi.org/10.1080/10874200903543971 Brady, K. T., Lydiard, R. B., Malcolm, R., & Ballenger, J. C. (1991). Cocaine-induced psychosis. The Journal of clinical psychiatry, 52(12), 509–512. Briun, E. A., Gekht, A. B., Polunina, A. G., Davydov, D. M., & Gusev, E. I. (2001). Neĭropsikhologicheskiĭ defitsit pri khronicheskoĭ narkotizatsii geroinom [Neuropsychological deficit in chronic heroin abusers]. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 101(3), 10–19. Briun, E. A., Gekht, A. B., Polunina, A. G., Davydov, D. M., & Gusev, E. I. (2001). Neĭropsikhologicheskiĭ defitsit pri khronicheskoĭ narkotizatsii geroinom [Neuropsychological deficit in chronic heroin abusers]. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 101(3), 10–19. Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68(5), 815–834. https://doi.org/10.1016/j.neuron.2010.11.022 Bruder, G. E., Fong, R., Tenke, C. E., Leite, P., Towey, J. P., Stewart, J. E., McGrath, P. J., & Quitkin, F. M. (1997). Regional brain asymmetries in major depression with or without an anxiety disorder: a quantitative electroencephalographic study. Biological psychiatry, 41(9), 939–948. https://doi.org/10.1016/S0006-3223(96)00260-0 Buckner R. L. (2013). The brain's default network: origins and implications for the study of psychosis. Dialogues in clinical neuroscience, 15(3), 351–358. https://doi.org/10.31887/DCNS.2013.15.3/rbuckner Capela, J. P., Fernandes, E., Remião, F., Bastos, M. L., Meisel, A., & Carvalho, F. (2007). Ecstasy induces apoptosis via 5-HT(2A)-receptor stimulation in cortical neurons. Neurotoxicology, 28(4), 868–875. https://doi.org/10.1016/j.neuro.2007.04.005 Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., Chialvo, D. R., & Nutt, D. (2014). The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in human neuroscience, 8, 20. https://doi.org/10.3389/fnhum.2014.00020 Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., Tagliazucchi, E., Schenberg, E. E., Nest, T., Orban, C., Leech, R., Williams, L. T., Williams, T. M., Bolstridge, M., Sessa, B., McGonigle, J., Sereno, M. I., Nichols, D., Hellyer, P. J., Hobden, P., … Nutt, D. J. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 113(17), 4853–4858. https://doi.org/10.1073/pnas.1518377113 Ceplova, Z., Palenicek, T., Brunovsky, M., & Protopopova, D. (2014). EEG and Neurocognitive Changes in Chronic Methamphetamine Abuse. Austinpublishinggroup.com. https://austinpublishinggroup.com/psychiatry-behavioral-sciences/fulltext/ajpbs-v1-id1024.php Cheon, E. J., Koo, B. H., & Choi, J. H. (2016). The Efficacy of Neurofeedback in Patients with Major Depressive Disorder: An Open Labeled Prospective Study. Applied psychophysiology and biofeedback, 41(1), 103–110. https://doi.org/10.1007/s10484-015-9315-8 Choi, S. W., Chi, S. E., Chung, S. Y., Kim, J. W., Ahn, C. Y., & Kim, H. T. (2011). Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology, 63(1), 43–51. https://doi.org/10.1159/000322290 Choi, S. W., Chi, S. E., Chung, S. Y., Kim, J. W., Ahn, C. Y., & Kim, H. T. (2011). Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology, 63(1), 43–51. https://doi.org/10.1159/000322290 Copersino, M. L., Herning, R. I., Better, W., Cadet, J. L., & Gorelick, D. A. (2009). EEG and cerebral blood flow velocity abnormalities in chronic cocaine users. Clinical EEG and neuroscience, 40(1), 39–42. https://doi.org/10.1177/155005940904000111 Cormier, Z. (2015). No link found between psychedelics and psychosis. Nature. https://doi.org/10.1038/nature.2015.16968 Costa, L., & Bauer, L. (1997). Quantitative electroencephalographic differences associated with alcohol, cocaine, heroin and dual-substance dependence. Drug and alcohol dependence, 46(1-2), 87–93. https://doi.org/10.1016/s0376-8716(97)00058-6 Curtin, K., Fleckenstein, A. E., Robison, R. J., Crookston, M. J., Smith, K. R., & Hanson, G. R. (2015). Methamphetamine/amphetamine abuse and risk of Parkinson's disease in Utah: a population-based assessment. Drug and alcohol dependence, 146, 30–38. https://doi.org/10.1016/j.drugalcdep.2014.10.027 Dadashi, M., Birashk, B., Taremian, F., Asgarnejad, A. A., & Momtazi, S. (2015). Effects of Increase in Amplitude of Occipital Alpha & Theta Brain Waves on Global Functioning Level of Patients with GAD. Basic and clinical neuroscience, 6(1), 14–20. Dafny, N., & Rosenfeld, G. C. (2017). Neurobiology of drugs of abuse. Conn's Translational Neuroscience, 715–722. https://doi.org/10.1016/b978-0-12-802381-5.00052-x Das, P., Kemp, A. H., Flynn, G., Harris, A. W., Liddell, B. J., Whitford, T. J., Peduto, A., Gordon, E., & Williams, L. M. (2007). Functional disconnections in the direct and indirect amygdala pathways for fear processing in schizophrenia. Schizophrenia research, 90(1-3), 284–294. https://doi.org/10.1016/j.schres.2006.11.023 Dias, A. M., & van Deusen, A. (2011). A new neurofeedback protocol for depression. The Spanish journal of psychology, 14(1), 374–384. https://doi.org/10.5209/rev_sjop.2011.v14.n1.34 Ersche, K. D., Meng, C., Ziauddeen, H., Stochl, J., Williams, G. B., Bullmore, E. T., & Robbins, T. W. (2020). Brain networks underlying vulnerability and resilience to drug addiction. Proceedings of the National Academy of Sciences of the United States of America, 117(26), 15253–15261. https://doi.org/10.1073/pnas.2002509117 Fehr, T., Kissler, J., Wienbruch, C., Moratti, S., Elbert, T., Watzl, H., & Rockstroh, B. (2003). Source distribution of neuromagnetic slow-wave activity in schizophrenic patients--effects of activation. Schizophrenia research, 63(1-2), 63–71. https://doi.org/10.1016/s0920-9964(02)00213-x Fleming, L. M., Javitt, D. C., Carter, C. S., Kantrowitz, J. T., Girgis, R. R., Kegeles, L. S., Ragland, J. D., Maddock, R. J., Lesh, T. A., Tanase, C., Robinson, J., Potter, W. Z., Carlson, M., Wall, M. M., Choo, T. H., Grinband, J., Lieberman, J., Krystal, J. H., & Corlett, P. R. (2019). A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms. NeuroImage. Clinical, 22, 101739. https://doi.org/10.1016/j.nicl.2019.101739 Flor-Henry P. (1976). Lateralized temporal-limbic dysfunction and psychopathology. Annals of the New York Academy of Sciences, 280, 777–797. https://doi.org/10.1111/j.1749-6632.1976.tb25541.x Flor-Henry, P., Koles, Z. J., & Tucker, D. M. (1982). Studies in EEG power and coherence (8-13 Hz) in Depression mania and schizophrenia compared to controls. Electrophysiological Correlates of Psychopathology, 1–7. https://doi.org/10.1159/000406982 Franken, I. H., Stam, C. J., Hendriks, V. M., & van den Brink, W. (2004). Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients. Neuropsychobiology, 49(2), 105–110. https://doi.org/10.1159/000076419 G Lerner, A., Goodman, C., Bor, O., & Lev-Ran, S. (2014). Synthetic Cannabis Substances (SPS) Use and Hallucinogen Persisting Perception Disorder (HPPD): Two Case Reports. The Israel journal of psychiatry and related sciences, 51(4), 277–280. Gamma, A., Frei, E., Lehmann, D., Pascual-Marqui, R. D., Hell, D., & Vollenweider, F. X. (2000). Mood state and brain electric activity in ecstasy users. Neuroreport, 11(1), 157–162. https://doi.org/10.1097/00001756-200001170-00031 Gattaz, W. F., Mayer, S., Ziegler, P., Platz, M., & Gasser, T. (1992). Hypofrontality on topographic EEG in schizophrenia. Correlations with neuropsychological and psychopathological parameters. European archives of psychiatry and clinical neuroscience, 241(6), 328–332. https://doi.org/10.1007/BF02191956 Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. The American journal of psychiatry, 159(10), 1642–1652. https://doi.org/10.1176/appi.ajp.159.10.1642 Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature reviews. Neuroscience, 12(11), 652–669. https://doi.org/10.1038/nrn3119 Gordon, E., Palmer, D. M., & Cooper, N. (2010). EEG alpha asymmetry in schizophrenia, depression, PTSD, panic disorder, ADHD and conduct disorder. Clinical EEG and neuroscience, 41(4), 178–183. https://doi.org/10.1177/155005941004100404 Gruzelier J. (2000). Self regulation of electrocortical activity in schizophrenia and schizotypy: a review. Clinical EEG (electroencephalography), 31(1), 23–29. https://doi.org/10.1177/155005940003100108 Halberstadt A. L. (2015). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behavioural brain research, 277, 99–120. https://doi.org/10.1016/j.bbr.2014.07.016 Herning, R. I., Guo, X., Better, W. E., Weinhold, L. L., Lange, W. R., Cadet, J. L., & Gorelick, D. A. (1997). Neurophysiological signs of cocaine dependence: increased electroencephalogram beta during withdrawal. Biological psychiatry, 41(11), 1087–1094. https://doi.org/10.1016/S0006-3223(96)00258-2 Hu, B., Dong, Q., Hao, Y., Zhao, Q., Shen, J., & Zheng, F. (2017). Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects. Journal of neural engineering, 14(4), 046002. https://doi.org/10.1088/1741-2552/aa6c6f Huang, A. S., Mitchell, J. A., Haber, S. N., Alia-Klein, N., & Goldstein, R. Z. (2018). The thalamus in drug addiction: From rodents to humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1742), 20170028. https://doi.org/10.1098/rstb.2017.0028 Imperatori, C., Massullo, C., Carbone, G. A., Panno, A., Giacchini, M., Capriotti, C., Lucarini, E., Ramella Zampa, B., Murillo-Rodríguez, E., Machado, S., & Farina, B. (2020). Increased Resting State Triple Network Functional Connectivity in Undergraduate Problematic Cannabis Users: A Preliminary EEG Coherence Study. Brain sciences, 10(3), 136. https://doi.org/10.3390/brainsci10030136 Iversen L. (2003). Cannabis and the brain. Brain : a journal of neurology, 126(Pt 6), 1252–1270. https://doi.org/10.1093/brain/awg143 Jan, R. K., Kydd, R. R., & Russell, B. R. (2012). Functional and structural brain changes associated with methamphetamine abuse. Brain sciences, 2(4), 434–482. https://doi.org/10.3390/brainsci2040434 Javitt D. C. (2007). Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. International review of neurobiology, 78, 69–108. https://doi.org/10.1016/S0074-7742(06)78003-5 Jaworska, N., Blier, P., Fusee, W., & Knott, V. (2012). α Power, α asymmetry and anterior cingulate cortex activity in depressed males and females. Journal of psychiatric research, 46(11), 1483–1491. Jentsch, J. D., & Roth, R. H. (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 20(3), 201–225. Jodo E. (2013). The role of the hippocampo-prefrontal cortex system in phencyclidine-induced psychosis: a model for schizophrenia. Journal of physiology, Paris, 107(6), 434–440. https://doi.org/10.1016/j.jphysparis.2013.06.002 Kauer J. A. (2004). Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annual review of physiology, 66, 447–475. https://doi.org/10.1146/annurev.physiol.66.032102.112534 Kesby, J. P., Eyles, D. W., McGrath, J. J., & Scott, J. G. (2018). Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Translational psychiatry, 8(1), 30. https://doi.org/10.1038/s41398-017-0071-9 Kilts C. D. (2001). Imaging the roles of the amygdala in drug addiction. Psychopharmacology bulletin, 35(1), 84–94. Klein, M. O., Battagello, D. S., Cardoso, A. R., Hauser, D. N., Bittencourt, J. C., & Correa, R. G. (2019). Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cellular and molecular neurobiology, 39(1), 31–59. https://doi.org/10.1007/s10571-018-0632-3 Klimesch W. (2012). α-band oscillations, attention, and controlled access to stored information. Trends in cognitive sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007 Kometer, M., Pokorny, T., Seifritz, E., & Volleinweider, F. X. (2015). Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology, 232(19), 3663–3676. Koob, G.F., Arends, M.A. and Moal, M.L. (2014) Drugs, addiction, and the brain. Amsterdam: Elsevier. Retrieved from: https://www.sciencedirect.com/book/9780123869371/drugs-addiction-and-the-brain Kosten, T. R., & George, T. P. (2002). The neurobiology of opioid dependence: implications for treatment. Science & practice perspectives, 1(1), 13–20. https://doi.org/10.1151/spp021113 Krylova, M., Skouras, S., Razi, A., Nicholson, A. A., Karner, A., Steyrl, D., Boukrina, O., Rees, G., Scharnowski, F., & Koush, Y. (2021). Progressive modulation of resting-state brain activity during neurofeedback of Positive-Social Emotion Regulation Networks. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-02079-4 Kutlu, M. G., & Gould, T. J. (2016). Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learning & memory (Cold Spring Harbor, N.Y.), 23(10), 515–533. https://doi.org/10.1101/lm.042192.116 Lee, U., Ku, S., Noh, G., Baek, S., Choi, B., & Mashour, G. A. (2013). Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology, 118(6), 1264–1275. https://doi.org/10.1097/ALN.0b013e31829103f5 Leyrer-Jackson, J. M., Hood, L. E., & Olive, M. F. (2021). Drugs of Abuse Differentially Alter the Neuronal Excitability of Prefrontal Layer V Pyramidal Cell Subtypes. Frontiers in cellular neuroscience, 15, 703655. https://doi.org/10.3389/fncel.2021.703655 Li, W., Li, Q., Zhu, J., Qin, Y., Zheng, Y., Chang, H., Zhang, D., Wang, H., Wang, L., Wang, Y., & Wang, W. (2013). White matter impairment in chronic heroin dependence: A quantitative DTI Study. Brain Research, 1531, 58–64. https://doi.org/10.1016/j.brainres.2013.07.036 Li, X., Zhang, J., Li, X.-D., Cui, W., & Su, R. (2020). Neurofeedback training for Brain Functional Connectivity Improvement in mild cognitive impairment. Journal of Medical and Biological Engineering, 40(4), 484–495. https://doi.org/10.1007/s40846-020-00531-w Liu, Y., Chen, Y., Fraga-González, G., Szpak, V., Laverman, J., Wiers, R. W., & Richard Ridderinkhof, K. (2022). Resting-state EEG, Substance use and Abstinence After Chronic use: A Systematic Review. Clinical EEG and neuroscience, 53(4), 344–366. https://doi.org/10.1177/15500594221076347 Marsman, A., van den Heuvel, M. P., Klomp, D. W., Kahn, R. S., Luijten, P. R., & Hulshoff Pol, H. E. (2013). Glutamate in schizophrenia: a focused review and meta-analysis of ¹H-MRS studies. Schizophrenia bulletin, 39(1), 120–129. https://doi.org/10.1093/schbul/sbr069 Martz, M. E., Hart, T., Heitzeg, M. M., & Peltier, S. J. (2020). Neuromodulation of brain activation associated with addiction: A review of real-time fMRI neurofeedback studies. NeuroImage. Clinical, 27, 102350. https://doi.org/10.1016/j.nicl.2020.102350 Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications. Basic and clinical neuroscience, 7(2), 143–158. https://doi.org/10.15412/J.BCN.03070208 Mathersul, D., Williams, L. M., Hopkinson, P. J., & Kemp, A. H. (2008). Investigating models of affect: relationships among EEG alpha asymmetry, depression, and anxiety. Emotion (Washington, D.C.), 8(4), 560–572. https://doi.org/10.1037/a0012811 Matsuzaki, M., & Dowling, K. C. (1985). Phencyclidine (PCP): effects of acute and chronic administration on EEG activities in the rhesus monkey. Electroencephalography and clinical neurophysiology, 60(4), 356–366. https://doi.org/10.1016/0013-4694(85)90009-4 Mattia, A., & Moreton, J. E. (1986). Electroencephalographic (EEG), EEG power spectra, and behavioral correlates in rats given phencyclidine. Neuropharmacology, 25(7), 763–769. https://doi.org/10.1016/0028-3908(86)90093-6 Mayer, A., Schwiedrzik, C. M., Wibral, M., Singer, W., & Melloni, L. (2016). Expecting to See a Letter: Alpha Oscillations as Carriers of Top-Down Sensory Predictions. Cerebral cortex (New York, N.Y. : 1991), 26(7), 3146–3160. https://doi.org/10.1093/cercor/bhv146 McCutcheon, R. A., Krystal, J. H., & Howes, O. D. (2020). Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World psychiatry : official journal of the World Psychiatric Association (WPA), 19(1), 15–33. https://doi.org/10.1002/wps.20693 Megumi, F., Yamashita, A., Kawato, M., & Imamizu, H. (2015). Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network. Frontiers in human neuroscience, 9, 160. https://doi.org/10.3389/fnhum.2015.00160 Moore N. C. (2000). A review of EEG biofeedback treatment of anxiety disorders. Clinical EEG (electroencephalography), 31(1), 1–6. https://doi.org/10.1177/155005940003100105 Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: Cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18(2), 73–85. https://doi.org/10.1038/nrn.2016.165 Morgan, C. J., & Curran, H. V. (2006). Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology, 188(4), 408–424. https://doi.org/10.1007/s00213-006-0572-3 Morgan, C. J., Curran, H. V., & Independent Scientific Committee on Drugs (2012). Ketamine use: a review. Addiction (Abingdon, England), 107(1), 27–38. https://doi.org/10.1111/j.1360-0443.2011.03576.x Morihisa, J. M., Duffy, F. H., & Wyatt, R. J. (1983). Brain electrical activity mapping (BEAM) in schizophrenic patients. Archives of general psychiatry, 40(7), 719–728. https://doi.org/10.1001/archpsyc.1983.01790060017002 Morris, B. J., Cochran, S. M., & Pratt, J. A. (2005). PCP: from pharmacology to modelling schizophrenia. Current opinion in pharmacology, 5(1), 101–106. https://doi.org/10.1016/j.coph.2004.08.008 Morton W. A. (1999). Cocaine and Psychiatric Symptoms. Primary care companion to the Journal of clinical psychiatry, 1(4), 109–113. https://doi.org/10.4088/pcc.v01n0403 Motlagh, F., Ibrahim, F., Rashid, R., Seghatoleslam, T., & Habil, H. (2016). Investigation of brain electrophysiological properties among heroin addicts: Quantitative EEG and event-related potentials. Journal of Neuroscience Research, 95(8), 1633–1646. https://doi.org/10.1002/jnr.23988 Motlagh, F., Ibrahim, F., Rashid, R., Shafiabady, N., Seghatoleslam, T., & Habil, H. (2018). Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents. Psychopharmacology, 235(11), 3273–3288. https://doi.org/10.1007/s00213-018-5035-0 Murray J. B. (1986). Marijuana's effects on human cognitive functions, psychomotor functions, and personality. The Journal of general psychology, 113(1), 23–55. https://doi.org/10.1080/00221309.1986.9710540 Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., Sessa, B., Papadopoulos, A., Bolstridge, M., Singh, K. D., Feilding, A., Friston, K. J., & Nutt, D. J. (2013). Broadband cortical desynchronization underlies the human psychedelic state. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(38), 15171–15183. https://doi.org/10.1523/JNEUROSCI.2063-13.2013 Muthukumaraswamy, S. D., Shaw, A. D., Jackson, L. E., Hall, J., Moran, R., & Saxena, N. (2015). Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(33), 11694–11706. https://doi.org/10.1523/JNEUROSCI.0903-15.2015 Narendran, R., Frankle, W. G., Keefe, R., Gil, R., Martinez, D., Slifstein, M., Kegeles, L. S., Talbot, P. S., Huang, Y., Hwang, D. R., Khenissi, L., Cooper, T. B., Laruelle, M., & Abi-Dargham, A. (2005). Altered prefrontal dopaminergic function in chronic recreational ketamine users. The American journal of psychiatry, 162(12), 2352–2359. https://doi.org/10.1176/appi.ajp.162.12.2352 Newton, T. F., Cook, I. A., Kalechstein, A. D., Duran, S., Monroy, F., Ling, W., & Leuchter, A. F. (2003). Quantitative EEG abnormalities in recently abstinent methamphetamine dependent individuals. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 114(3), 410–415. https://doi.org/10.1016/s1388-2457(02)00409-1 Newton, T. F., Kalechstein, A. D., Hardy, D. J., Cook, I. A., Nestor, L., Ling, W., & Leuchter, A. F. (2004). Association between quantitative EEG and neurocognition in methamphetamine-dependent volunteers. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 115(1), 194–198. https://doi.org/10.1016/s1388-2457(03)00314-6 NIDA. 2021, April 13. Is there a link between marijuana use and psychiatric disorders?. Retrieved from https://nida.nih.gov/publications/research-reports/marijuana/there-link-between-marijuana-use-psychiatric-disorders on 2023, March 22 Niesters, M., Khalili-Mahani, N., Martini, C., Aarts, L., van Gerven, J., van Buchem, M. A., Dahan, A., & Rombouts, S. (2012). Effect of subanesthetic ketamine on intrinsic functional brain connectivity: a placebo-controlled functional magnetic resonance imaging study in healthy male volunteers. Anesthesiology, 117(4), 868–877. https://doi.org/10.1097/ALN.0b013e31826a0db3 Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. https://doi.org/10.1016/j.paid.2012.11.037 Noldy, N. E., Santos, C. V., Politzer, N., Blair, R. D., & Carlen, P. L. (1994). Quantitative EEG changes in cocaine withdrawal: evidence for long-term CNS effects. Neuropsychobiology, 30(4), 189–196. https://doi.org/10.1159/000119160 Nutt, D. J. (2012). Drugs-- without the hot air : minimising the harms of legal and illegal drugs. Uit. Palhano-Fontes, F., Andrade, K. C., Tofoli, L. F., Santos, A. C., Crippa, J. A., Hallak, J. E., Ribeiro, S., & de Araujo, D. B. (2015). The psychedelic state induced by ayahuasca modulates the activity and connectivity of the Default Mode Network. PLOS ONE, 10(2). Pallavicini, C., Vilas, M. G., Villarreal, M., Zamberlan, F., Muthukumaraswamy, S., Nutt, D., Carhart-Harris, R., & Tagliazucchi, E. (2019). Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives. NeuroImage, 200, 281–291. https://doi.org/10.1016/j.neuroimage.2019.06.053 Pallavicini, C., Vilas, M. G., Villarreal, M., Zamberlan, F., Muthukumaraswamy, S., Nutt, D., Carhart-Harris, R., & Tagliazucchi, E. (2019). Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives. NeuroImage, 200, 281–291. https://doi.org/10.1016/j.neuroimage.2019.06.053 Paulus, M. P., & Stewart, J. L. (2020). Neurobiology, Clinical Presentation, and Treatment of Methamphetamine Use Disorder: A Review. JAMA psychiatry, 77(9), 959–966. https://doi.org/10.1001/jamapsychiatry.2020.0246 Peeters, F., Oehlen, M., Ronner, J., van Os, J., & Lousberg, R. (2014). Neurofeedback as a treatment for major depressive disorder--a pilot study. PloS one, 9(3), e91837. https://doi.org/10.1371/journal.pone.0091837 Polunina, A. G., & Davydov, D. M. (2004). EEG spectral power and mean frequencies in early heroin abstinence. Progress in neuro-psychopharmacology & biological psychiatry, 28(1), 73–82. https://doi.org/10.1016/j.pnpbp.2003.09.022 Polunina, A. G., & Davydov, D. M. (2006). EEG correlates of Wechsler Adult Intelligence Scale. The International journal of neuroscience, 116(10), 1231–1248. https://doi.org/10.1080/00207450600550287 Prashad, S., Dedrick, E. S., & Filbey, F. M. (2018). Cannabis users exhibit increased cortical activation during resting state compared to non-users. NeuroImage, 179, 176–186. https://doi.org/10.1016/j.neuroimage.2018.06.031 Prichep, L. S., Alper, K. R., Kowalik, S., Merkin, H., Tom, M., John, E. R., & Rosenthal, M. S. (1996). Quantitative electroencephalographic characteristics of crack cocaine dependence. Biological psychiatry, 40(10), 986–993. https://doi.org/10.1016/0006-3223(95)00575-7 Reneman, L., de Win, M. M., van den Brink, W., Booij, J., & den Heeten, G. J. (2006). Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects. Journal of psychopharmacology (Oxford, England), 20(2), 164–175. https://doi.org/10.1177/0269881106061515 Riba, J., Anderer, P., Jané, F., Saletu, B., & Barbanoj, M. J. (2004). Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography. Neuropsychobiology, 50(1), 89–101. Riba, J., Anderer, P., Jané, F., Saletu, B., & Barbanoj, M. J. (2004). Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography. Neuropsychobiology, 50(1), 89–101. https://doi.org/10.1159/000077946 Riba, J., Anderer, P., Morte, A., Urbano, G., Jané, F., Saletu, B., & Barbanoj, M. J. (2002). Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. British journal of clinical pharmacology, 53(6), 613–628. https://doi.org/10.1046/j.1365-2125.2002.01609.x Rice, K. M., Blanchard, E. B., & Purcell, M. (1993). Biofeedback treatments of generalized anxiety disorder: preliminary results. Biofeedback and self-regulation, 18(2), 93–105. https://doi.org/10.1007/BF01848110 Rockstroh, B. S., Wienbruch, C., Ray, W. J., & Elbert, T. (2007). Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network?. BMC psychiatry, 7, 44. https://doi.org/10.1186/1471-244X-7-44 Roemer, R. A., Cornwell, A., Dewart, D., Jackson, P., & Ercegovac, D. V. (1995). Quantitative electroencephalographic analyses in cocaine-preferring polysubstance abusers during abstinence. Psychiatry research, 58(3), 247–257. https://doi.org/10.1016/0165-1781(95)02474-b Rowland L. M. (2005). Subanesthetic ketamine: how it alters physiology and behavior in humans. Aviation, space, and environmental medicine, 76(7 Suppl), C52–C58. Rubia, K., Criaud, M., Wulff, M., Alegria, A., Brinson, H., Barker, G., Stahl, D., & Giampietro, V. (2019). Functional connectivity changes associated with fMRI neurofeedback of right inferior frontal cortex in adolescents with ADHD. NeuroImage, 188, 43–58. https://doi.org/10.1016/j.neuroimage.2018.11.055 Saxby, E., & Peniston, E. G. (1995). Alpha-theta brainwave neurofeedback training: an effective treatment for male and female alcoholics with depressive symptoms. Journal of clinical psychology, 51(5), 685–693. https://doi.org/10.1002/1097-4679(199509)51:53.0.co;2-k Schenberg, E. E., Alexandre, J. F., Filev, R., Cravo, A. M., Sato, J. R., Muthukumaraswamy, S. D., Yonamine, M., Waguespack, M., Lomnicka, I., Barker, S. A., & da Silveira, D. X. (2015). Acute biphasic effects of ayahuasca. PLOS ONE, 10(9). https://doi.org/10.1371/journal.pone.0137202 Schummer, G. (2008). The Disconnection Syndrome. Applied Psychophysiology and Biofeedback. 36. 157-162. Retrieved from https://www.researchgate.net/publication/340021183_The_Disconnection_Syndrome Schummer, G. J., & von Stietz, J. (2013). Qeeg guided neurofeedback to treat schizophrenia: A case study. Journal of Neurotherapy, 17(4), 265–271. https://doi.org/10.1080/10874208.2013.852893 Scofield, M. D., Heinsbroek, J. A., Gipson, C. D., Kupchik, Y. M., Spencer, S., Smith, A. C., Roberts-Wolfe, D., & Kalivas, P. W. (2016). The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacological reviews, 68(3), 816–871. https://doi.org/10.1124/pr.116.012484 Scott, C. E., & Kendall, D. A. (2017). Assessing allosteric modulation of CB1 at the receptor and cellular levels. Methods in Enzymology, 593, 317–342. https://doi.org/10.1016/bs.mie.2017.05.002 Shrivastava, A., Johnston, M., Terpstra, K., & Bureau, Y. (2014). Cannabis and psychosis: Neurobiology. Indian journal of psychiatry, 56(1), 8–16. https://doi.org/10.4103/0019-5545.124708 Small, J. G., Milstein, V., Sharpley, P. H., Klapper, M., & Small, I. F. (1984). Electroencephalographic findings in relation to diagnostic constructs in psychiatry. Biological psychiatry, 19(4), 471–487. Smigielski, L., Scheidegger, M., Kometer, M., & Vollenweider, F. X. (2019). Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. NeuroImage, 196, 207–215. https://doi.org/10.1016/j.neuroimage.2019.04.009 Sponheim, S. R., Clementz, B. A., Iacono, W. G., & Beiser, M. (1994). Resting EEG in first-episode and chronic schizophrenia. Psychophysiology, 31(1), 37–43. https://doi.org/10.1111/j.1469-8986.1994.tb01023.x Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. (2011). Frontal EEG asymmetry during emotional challenge differentiates individuals with and without lifetime major depressive disorder. Journal of affective disorders, 129(1-3), 167–174. https://doi.org/10.1016/j.jad.2010.08.029 Stoermer, R., Drewe, J., Dursteler-Mac Farland, K. M., Hock, C., Mueller-Spahn, F., Ladewig, D., Stohler, R., & Mager, R. (2003). Safety of injectable opioid maintenance treatment for heroin dependence. Biological psychiatry, 54(8), 854–861. https://doi.org/10.1016/s0006-3223(03)00290-7 Strous, J. F. M., Weeland, C. J., van der Draai, F. A., Daams, J. G., Denys, D., Lok, A., Schoevers, R. A., & Figee, M. (2022). Brain Changes Associated With Long-Term Ketamine Abuse, A Systematic Review. Frontiers in neuroanatomy, 16, 795231. https://doi.org/10.3389/fnana.2022.795231 Struve, F. A., Patrick, G., Straumanis, J. J., Fitz-Gerald, M. J., & Manno, J. (1998). Possible EEG sequelae of very long duration marihuana use: pilot findings from topographic quantitative EEG analyses of subjects with 15 to 24 years of cumulative daily exposure to THC. Clinical EEG (electroencephalography), 29(1), 31–36. https://doi.org/10.1177/155005949802900110 Struve, F. A., Straumanis, J. J., & Patrick, G. (1994). Persistent topographic quantitative EEG sequelae of chronic marihuana use: a replication study and initial discriminant function analysis. Clinical EEG (electroencephalography), 25(2), 63–75. https://doi.org/10.1177/155005949402500207 Struve, F. A., Straumanis, J. J., Patrick, G., & Price, L. (1989). Topographic mapping of quantitative EEG variables in chronic heavy marihuana users: empirical findings with psychiatric patients. Clinical EEG (electroencephalography), 20(1), 6–23. https://doi.org/10.1177/155005948902000106 Struve, F. A., Straumanis, J. J., Patrick, G., Leavitt, J., Manno, J. E., & Manno, B. R. (1999). Topographic quantitative EEG sequelae of chronic marihuana use: a replication using medically and psychiatrically screened normal subjects. Drug and alcohol dependence, 56(3), 167–179. https://doi.org/10.1016/s0376-8716(99)00029-0 Stuckey, D. E., Lawson, R., & Luna, L. E. (2005). EEG gamma coherence and other correlates of subjective reports during ayahuasca experiences. Journal of Psychoactive Drugs, 37(2), 163–178. https://doi.org/10.1080/02791072.2005.10399798 Studerus, E., Gamma, A., & Vollenweider, F. X. (2010). Psychometric evaluation of the altered states of consciousness rating scale (OAV). PloS one, 5(8), e12412. https://doi.org/10.1371/journal.pone.0012412 Surmeli, T., Ertem, A., Eralp, E., & Kos, I. H. (2012). Schizophrenia and the efficacy of qEEG-guided neurofeedback treatment: a clinical case series. Clinical EEG and neuroscience, 43(2), 133–144. https://doi.org/10.1177/1550059411429531 Taylor, J. E., Yamada, T., Kawashima, T., Kobayashi, Y., Yoshihara, Y., Miyata, J., Murai, T., Kawato, M., & Motegi, T. (2022). Depressive symptoms reduce when dorsolateral prefrontal cortex-precuneus connectivity normalizes after functional connectivity neurofeedback. Scientific reports, 12(1), 2581. https://doi.org/10.1038/s41598-022-05860-1 Teleanu, R. I., Niculescu, A. G., Roza, E., Vladâcenco, O., Grumezescu, A. M., & Teleanu, D. M. (2022). Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. International journal of molecular sciences, 23(11), 5954. https://doi.org/10.3390/ijms23115954 Timmermann, C., Roseman, L., Schartner, M., Milliere, R., Williams, L., Erritzoe, D., Muthukumaraswamy, S., Ashton, M., Bendrioua, A., Kaur, O., Turton, S., Nour, M. M., Day, C. M., Leech, R., Nutt, D., & Carhart-Harris, R. (2019). Neural correlates of the DMT experience as assessed via multivariate EEG. https://doi.org/10.1101/706283 Timmermann, C., Spriggs, M. J., Kaelen, M., Leech, R., Nutt, D. J., Moran, R. J., Carhart-Harris, R. L., & Muthukumaraswamy, S. D. (2018). LSD modulates effective connectivity and neural adaptation mechanisms in an auditory oddball paradigm. Neuropharmacology, 142, 251–262. Tomkins, D. M., & Sellers, E. M. (2001). Addiction and the brain: the role of neurotransmitters in the cause and treatment of drug dependence. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 164(6), 817–821. U.S. Department of Health and Human Services. (2022, September 29). How do hallucinogens (LSD, psilocybin, peyote, DMT, and ayahuasca) affect the brain and body? National Institutes of Health. Retrieved, from https://nida.nih.gov/publications/research-reports/hallucinogens-dissociative-drugs/how-do-hallucinogens-lsd-psilocybin-peyote-dmt-ayahuasca-affect-brain-body Upadhyay, J., Maleki, N., Potter, J., Elman, I., Rudrauf, D., Knudsen, J., Wallin, D., Pendse, G., McDonald, L., Griffin, M., Anderson, J., Nutile, L., Renshaw, P., Weiss, R., Becerra, L., & Borsook, D. (2010). Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain : a journal of neurology, 133(Pt 7), 2098–2114. https://doi.org/10.1093/brain/awq138 van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M. A., Poort, J., van der Togt, C., & Roelfsema, P. R. (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(40), 14332–14341. https://doi.org/10.1073/pnas.1402773111 Vejmola, Č., Tylš, F., Piorecká, V., Koudelka, V., Kadeřábek, L., Novák, T., & Páleníček, T. (2021). Psilocin, LSD, mescaline, and dob all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity. Translational Psychiatry, 11(1). https://doi.org/10.1038/s41398-021-01603-4 Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Logan, J., Wong, C., & Miller, E. N. (2001). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. The American journal of psychiatry, 158(3), 377–382. https://doi.org/10.1176/appi.ajp.158.3.377 Volkow, N. D., Michaelides, M., & Baler, R. (2019). The Neuroscience of Drug Reward and Addiction. Physiological reviews, 99(4), 2115–2140. https://doi.org/10.1152/physrev.00014.2018 Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., Telang, F., & Baler, R. (2010). Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit. BioEssays : news and reviews in molecular, cellular and developmental biology, 32(9), 748–755. https://doi.org/10.1002/bies.201000042 Walker, J. E., Kozlowski, G. P., & Lawson, R. (2007). A modular activation/coherence approach to evaluating clinical/QEEG correlations and for guiding neurofeedback training: Modular insufficiencies, modular excesses, disconnections, and hyperconnections. Journal of Neurotherapy, 11(1), 25–44. https://doi.org/10.1300/j184v11n01_03 Wang, G. J., Volkow, N. D., Chang, L., Miller, E., Sedler, M., Hitzemann, R., Zhu, W., Logan, J., Ma, Y., & Fowler, J. S. (2004). Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. The American journal of psychiatry, 161(2), 242–248. https://doi.org/10.1176/appi.ajp.161.2.242 Wang, G. Y., Kydd, R. R., & Russell, B. R. (2016). Quantitative EEG and Low-Resolution Electromagnetic Tomography (LORETA) Imaging of Patients Undergoing Methadone Treatment for Opiate Addiction. Clinical EEG and neuroscience, 47(3), 180–187. https://doi.org/10.1177/1550059415586705 Weinberger, D. R. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 43(2), 114. https://doi.org/10.1001/archpsyc.1986.01800020020004 Wood, S., Sage, J. R., Shuman, T., & Anagnostaras, S. G. (2013). Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacological reviews, 66(1), 193–221. https://doi.org/10.1124/pr.112.007054 Zakzanis, K. K., & Young, D. A. (2001). Memory impairment in abstinent MDMA ("Ecstasy") users: a longitudinal investigation. Neurology, 56(7), 966–969. https://doi.org/10.1212/wnl.56.7.966 Zhang, S., Hu, S., Sinha, R., Potenza, M. N., Malison, R. T., & Li, C. S. (2016). Cocaine dependence and thalamic functional connectivity: a multivariate pattern analysis. NeuroImage. Clinical, 12, 348–358. https://doi.org/10.1016/j.nicl.2016.08.006 Zhang, S., Zhornitsky, S., Le, T. M., & Li, C. R. (2019). Hypothalamic Responses to Cocaine and Food Cues in Individuals with Cocaine Dependence. The international journal of neuropsychopharmacology, 22(12), 754–764. https://doi.org/10.1093/ijnp/pyz044 Zhao, Z., Yao, S., Li, K., Sindermann, C., Zhou, F., Zhao, W., Li, J., Lührs, M., Goebel, R., Kendrick, K. M., & Becker, B. (2019). Real-Time Functional Connectivity-Informed Neurofeedback of Amygdala-Frontal Pathways Reduces Anxiety. Psychotherapy and psychosomatics, 88(1), 5–15. https://doi.org/10.1159/000496057